Telegram Group & Telegram Channel
Объясните разницу между AdaBoost и XGBoost

Оба метода объединяют слабые модели в одну сильную модель. И AdaBoost, и XGBoost в процессе обучения будут увеличивать ансамбль, добавляя в него новые слабые модели на каждой итерации. Разница между методами заключается в том, как расширяется ансамбль.


▪️AdaBoost изначально присваивает одинаковый вес каждому набору данных. Затем он корректирует веса точек выборки после каждого шага. Элементы, которые были классифицированы неверно, приобретают больший вес в следующей итерации.
▪️XGBoost использует градиентный бустинг, который оптимизирует произвольную дифференцируемую функцию потерь. То есть алгоритм строит первое дерево с некоторой ошибкой прогнозирования. Затем добавляются последующие деревья для исправления ошибок предыдущих. XGBoost имеет встроенные механизмы для регуляризации.

Иными словами, разница между алгоритмами в том, что XGBoost не присваивает неправильно классифицированным элементам больший вес.

#машинное_обучение



tg-me.com/ds_interview_lib/184
Create:
Last Update:

Объясните разницу между AdaBoost и XGBoost

Оба метода объединяют слабые модели в одну сильную модель. И AdaBoost, и XGBoost в процессе обучения будут увеличивать ансамбль, добавляя в него новые слабые модели на каждой итерации. Разница между методами заключается в том, как расширяется ансамбль.


▪️AdaBoost изначально присваивает одинаковый вес каждому набору данных. Затем он корректирует веса точек выборки после каждого шага. Элементы, которые были классифицированы неверно, приобретают больший вес в следующей итерации.
▪️XGBoost использует градиентный бустинг, который оптимизирует произвольную дифференцируемую функцию потерь. То есть алгоритм строит первое дерево с некоторой ошибкой прогнозирования. Затем добавляются последующие деревья для исправления ошибок предыдущих. XGBoost имеет встроенные механизмы для регуляризации.

Иными словами, разница между алгоритмами в том, что XGBoost не присваивает неправильно классифицированным элементам больший вес.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/184

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The lead from Wall Street offers little clarity as the major averages opened lower on Friday and then bounced back and forth across the unchanged line, finally finishing mixed and little changed.The Dow added 33.18 points or 0.10 percent to finish at 34,798.00, while the NASDAQ eased 4.54 points or 0.03 percent to close at 15,047.70 and the S&P 500 rose 6.50 points or 0.15 percent to end at 4,455.48. For the week, the Dow rose 0.6 percent, the NASDAQ added 0.1 percent and the S&P gained 0.5 percent.The lackluster performance on Wall Street came on uncertainty about the outlook for the markets following recent volatility.

What is Telegram?

Telegram is a cloud-based instant messaging service that has been making rounds as a popular option for those who wish to keep their messages secure. Telegram boasts a collection of different features, but it’s best known for its ability to secure messages and media by encrypting them during transit; this prevents third-parties from snooping on messages easily. Let’s take a look at what Telegram can do and why you might want to use it.

Библиотека собеса по Data Science | вопросы с собеседований from sg


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA